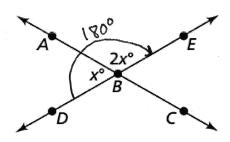
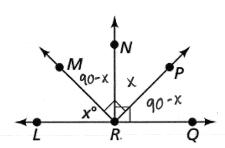

Lesson 2.06 - "On Your Own" Worksheet


Name: Key

1. Use the figure to find the measure of each angle.

b.
$$m \angle ABD$$
 if $m \angle CBD = 43^{\circ}$ m $\angle ABD = 137^{\circ}$


- c. $m \angle EBD$ if $m \angle CBD = 43^{\circ}$ m $\angle EBD = 47^{\circ}$
- **2.** Use the figure to find $m \angle ABE$.

$$x + 2x = 180^{6}$$

 $3x = 180$
 $x = 60$

$$m \angle ABE = 120^{\circ}$$

3. Use the figure to find $m \angle QRP$.

$$m \angle QRP = \frac{(Q \Diamond - \chi)^{\circ}}{}$$

4. Below is an incomplete proof that $\angle L \cong \angle R$ in the figure. Complete the proof by providing the missing reasons.

Statement

a. $\overline{LM}\cong \overline{RM}, \overline{NM}\cong \overline{QM}$

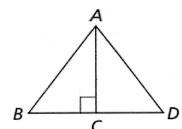
Given

Reason

b. $\angle LMN \cong \angle RMQ$

Vertical Angle Theorem

c. $\triangle LMN \cong \triangle RMQ$

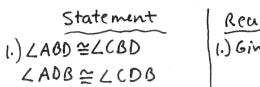

SAS =

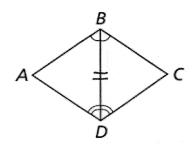
d. $\angle L \cong \angle R$

CPCTC

(corresponding Parts of Congruent Triangles are congruent)

5. In the figure, $\triangle ABC \cong \triangle ADC$. List three statements you can prove. $\triangle Triangles$ are $\cong !$



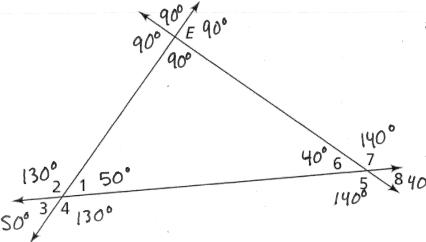

Example Answers

· AB = AD · mLACD = 90°

· LB = LD · LBAC = LDAC

6. Given the figure, prove that $\overline{AB} \cong \overline{CB}$.

2.) BD = BD


2) segments = to themselves

3.) AABD = ACBD

3.) ASA ≅

4.) $\overrightarrow{A0} \cong \overrightarrow{CB} \rightarrow \overrightarrow{CPCTC}$

7. Use the figure below. Suppose that $m \angle 1 + m \angle 6 = 90^{\circ}$ and $m \angle 7 = 140^{\circ}$.

- a.) Find the measure of each numbered angle.
- b.) Assume you know that the sum of the measures of the angles in a triangle is 180°. Find the measure of each angle around point *E*.